

ISP1763A Linux

software

UM0907

User manual

CD00264695 Rev 3 2013-10-02 ISP1763A

© Copyright ST 2010, 2013. All rights reserved

Abstract

This document provides information on the interfaces and data structures that are
required to use the ISP1763A host controller, OTG controller and peripheral controller
driver layers for the Linux operating system.

Keywords

isp1763a; host controller; peripheral controller; otg controller; usb; universal serial bus

ISP1763A Linux software User manual Legal information

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 2 (35)

 © Copyright ST 2010, 2013. All rights reserved

Legal information

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right
to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time,
without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability
whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or
services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party
products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY
JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR
ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY
DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS
ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED
SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any
warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of
ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
- Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

ISP1763A Linux software User manual Contents

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 3 (35)

 © Copyright ST 2010, 2013. All rights reserved

Contents

1 About this document 6

1.1 Purpose 6

1.2 Revision information 6

1.3 Reference list 6

2 Introduction 7

3 Overview 8

3.1 ISP1763A hardware access layer 8

3.2 ISP1763A host controller driver 9

3.3 ISP1763A device controller driver 9

3.4 ISP1763A OTG controller driver 9

4 Hardware abstraction layer 10

4.1 Module management interface 10

4.1.1 isp1763_pci_module_init 10

4.1.2 isp1763_pci_module_cleanup 10

4.2 Controller driver interface 10

4.2.1 Driver registration interface 11

4.2.2 Resource management interface 12

4.2.3 I/O access interface 12

5 Host controller interface 16

5.1 Module management and controller routines 17

5.1.1 pehci_hcd_reset 17

5.1.2 pehci_hcd_start 17

5.1.3 pehci_hcd_init_map_buffers 18

5.1.4 pehci_hcd_start_controller 19

5.1.5 pehci_hcd_suspend 19

5.1.6 pehci_hcd_resume 19

5.1.7 pehci_hcd_stop 20

ISP1763A Linux software User manual Contents

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 4 (35)

 © Copyright ST 2010, 2013. All rights reserved

5.1.8 pehci_hcd_irq 20

5.2 Memory management interface 20

5.2.1 phci_hcd_mem_init 21

5.2.2 phci_hcd_mem_alloc 21

5.2.3 phci_hcd_mem_free 21

5.3 Root hub and internal hub management 21

5.4 Data transfer interface 22

5.4.1 pehci_hcd_urb_enqueue 22

5.4.2 pehci_hcd_urb_dequeue 22

6 Device controller driver interface 23

6.1 Module management interface 23

6.1.1 pdc_module_init 23

6.1.2 pdc_module_cleanup 23

6.2 Interface between DCD and USB class driver 23

6.2.1 set_config 23

6.2.2 class_vendor 24

6.2.3 set_intf 24

6.2.4 pdc_register_class_drv 24

6.2.5 pdc_deregister_class_drv 25

6.2.6 pdc_submit_urb 25

6.2.7 pdc_cancel_urb 25

6.2.8 pdc_open_pipe 25

6.2.9 pdc_close_pipe 26

6.2.10 pdc_pipe_operation 26

6.3 Interface between DCD and hardware abstraction layer 26

6.3.1 pdc_read8 26

6.3.2 pdc_write8 26

6.3.3 pdc_read16 27

6.3.4 pdc_write16 27

6.3.5 pdc_read32 27

6.3.6 pdc_write32 27

6.3.7 readendpoint 28

6.3.8 writeendpoint 28

ISP1763A Linux software User manual Contents

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 5 (35)

 © Copyright ST 2010, 2013. All rights reserved

7 OTG controller interface 29

7.1 Module management 29

7.1.1 usb_otg_module_init 29

7.1.2 usb_otg_module_cleanup 29

7.2 OTG controller routines 30

7.2.1 otgfsm_pdc_notif 30

7.2.2 usb_otg_isr_handler 30

7.2.3 otgfsm_current_state 30

7.2.4 otgfsm_deininit 30

7.2.5 otgfsm_init 31

7.2.6 otgfsm_dp_pullup 31

7.2.7 otgfsm_dp_pulldown 31

7.2.8 otgfsm_local_vbus 31

7.2.9 otgfsm_otg_se0_en 31

7.2.10 otgfsm_run 32

7.2.11 otgfsm_run_Adevice 32

7.2.12 otgfsm_run_Bdevice 32

7.2.13 otgfsm_set_state 32

7.2.14 otgfsm_status_probe 33

7.2.15 otgfsm_sw_sel_hc_dc 33

7.2.16 otgfsm_vbus_chrg 33

7.2.17 otgfsm_vbus_drv 33

7.2.18 OtgHal_AccessCtrlReg 34

7.2.19 phOtgHal_ConfigHwForFsmState 34

Glossary 35

ISP1763A Linux software User manual About this document

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 6 (35)

© Copyright ST 2010, 2013. All rights reserved

1 About this document

1.1 Purpose

This document provides information on the interfaces and data structures that are
required to use the ISP1763A host controller, OTG controller, and peripheral controller
driver layers for the Linux operating system.

1.2 Revision information

Table 1 Revision history

Date Rev. Comments

2010-02-17 1 First version.

2013-04-04 2 Improved the quality of the PDF rendition. No other change in
the content.

2013-10-02 3 Applied STMicroelectronics branding. No change in the
content

1.3 Reference list

[1] Universal Serial Bus Specification
Rev. 2.0

www.usb.org

[2] ISP1763A Hi-Speed USB OTG
controller for portable applications
data sheet

CD00264885

http://www.usb.org/home

ISP1763A Linux software User manual Introduction

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 7 (35)

© Copyright ST 2010, 2013. All rights reserved

2 Introduction

The Universal Serial Bus (USB) host controller has become an integral part of most
embedded systems in recent years. Usually, the host controller is based on the PCI card
that is targeted for PC-based architecture. Embedded systems that are not equipped with
such a controller bus can benefit from the STMicroelectronics embedded host controller.

In addition to the host functionality, some embedded systems require the peripheral
functionality. Such embedded systems must contain a USB host controller and a USB
peripheral controller as part of the On-The-Go (OTG) implementation. OTG is a
supplement to Universal Serial Bus Specification Rev. 2.0 that allows access to the USB
host and the USB peripheral through a single physical connector. The OTG protocol
involves switching between the host and peripheral functionalities.

The ISP1763A is a USB OTG controller: USB host and USB peripheral. It has one host
port, and an OTG port that can be used as either a host or a peripheral.

This document provides information on interfaces and data structures required to use the
ISP1763A host controller, OTG controller, and peripheral controller driver layers for the
Linux operating system.

ISP1763A Linux software User manual Overview

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 8 (35)

© Copyright ST 2010, 2013. All rights reserved

3 Overview

Figure 1 ISP1763A system interface

The following subsections explain each layer in detail.

3.1 ISP1763A hardware access layer

The ISP1763A hardware access layer provides functions to access the ISP1763A
hardware and operating system platform related functions. This layer depends on the
platform and the ISP1763A hardware. Customers need to port this layer based on the
platform they are using. The interface between the ISP1763A hardware access layer and
top layers are defined in the API ISP1763A hardware access layer.

 HARDWARE ROOT HUB

ISP1763A HARDWARE ACCESS LAYER

ISP1763A HOST
CONTROLLER

ISP1763A OTG
CONTROLLER

DRIVER

ISP1763A PERIPHERAL
CONTROLLER

O
P
E
R
A
T
I
N
G

S
Y
S
T
E
M

O
P
E
R
A
T
I
N
G

S
Y
S
T
E
M

O
P
E
R
A
T
I
N
G

S
Y
S
T
E
M

I/O INTERFACE ISP1763A HARDWARE

TT HUB WITH TWO PORTS

CORE USBD CLASS DRIVER AND OTHER OPERATING SYSTEM DEPENDENT UNITS

HIGH-SPEED
USB PORT

OTG PORT

OPERATING
SYSTEM

OPERATING
SYSTEM

ISP1763A Linux software User manual Overview

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 9 (35)

© Copyright ST 2010, 2013. All rights reserved

3.2 ISP1763A host controller driver

The ISP1763A provides the host-capability function. The ISP1763A contains an OTG
state machine running within. If the device connected to the port is dual-role capable, then
the device negotiates the role and acts under the direction of the software.

3.3 ISP1763A device controller driver

The ISP1763A device controller driver is responsible for data transfer to the connected
USB host and manages bus activities. It provides interface to the USB protocol driver and
class drivers (device) for data transfer on the USB bus.

3.4 ISP1763A OTG controller driver

The OTG driver maintains the OTG Finite State Machine (FSM) by accessing and
controlling OTG controller registers through the HAL. If the device connected to the port is
dual-role capable, then the device negotiates the role and acts under the direction of the
FSM.

ISP1763A Linux software User manual Hardware abstraction

layer

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 10 (35)

© Copyright ST 2010, 2013. All rights reserved

4 Hardware abstraction layer

The hardware abstraction layer provides functions to access the host hardware and OS
platform-related functions. Porting of this layer is based on the platform.

4.1 Module management interface

This interfaces to the OS. It is called when loading and unloading the ISP1763A host
controller driver to the kernel.

The following functional interface is based on the PCI x86 platform. The functional
interface can, however, be modified, depending on the OS.

This function initializes the ISP1763A hardware access driver module. The Linux kernel
module manager calls this function.

static int __init isp1763_pci_module_init (void)

Parameters: None.

Return value:

0: The ISP1763A hardware access driver kernel module is successfully
completed.

< 0: The ISP1763A kernel module initialization has failed.

This function de-initializes the ISP1763A hardware access driver module. The Linux
kernel module manager calls this function during unloading of this module.

static void __exit isp1763_pci_module_cleanup (void)

Parameters: None.

Return value: None.

4.2 Controller driver interface

This section includes:

 Driver registration interface

 Resource management interface

 I/O access interface

 Kernel tracing interface

ISP1763A Linux software User manual Hardware abstraction

layer

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 11 (35)

© Copyright ST 2010, 2013. All rights reserved

This function registers driver access functions to the ISP1763A hardware abstraction
layer driver.

int isp1763_register_driver(struct isp1763_driver *drv)

Parameters:

drv: Pointer to the ISP1763A driver data structure (struct isp1763_driver). The
structure has the following elements.

typedef struct isp1763_driver {

 char *name;

 unsigned long index; /* HC or DC or OTG */

 isp1763_id *id;

 int (*probe)(struct isp1763_dev *dev,

 isp1763_id *id

 void (*remove)(struct isp1763_dev *dev);

 void (*suspend)(struct isp1763_dev *dev);

 void (*resume)(struct isp1763_dev *dev);

} isp_1763_driver_t;

name: Name of the driver registering to the hardware abstraction layer.

index: Driver type.

probe: The probe function is called by the hardware abstraction layer when it
finds the hardware of the type specified by the index. Input parameters to this
function are the ISP1763A device data structure (struct isp1763_dev).

remove: This is a removal function. The hardware abstraction layer calls this
function when it finds that the hardware is unavailable or inactive. Input
parameters to this function are the ISP1763A device data structure (struct
isp1763_dev).

suspend: This function is called by the hardware abstraction layer when it finds
that the hardware must be suspended. Input parameters to this function are the
ISP1763A device data structure (struct isp1763_dev). This function interface is
applicable only when the power management is enabled.

resume: This function is called by the hardware abstraction layer when it finds
that the hardware must be resumed from the suspended state. Input
parameters to this function are the ISP1763A device data structure (struct
isp1763_dev). This function interface is applicable only when the power
management is enabled.

Return value:

0: Driver registration is successful with the hardware abstraction layer.

< 0: OTG driver registration has failed.

ISP1763A Linux software User manual Hardware abstraction

layer

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 12 (35)

© Copyright ST 2010, 2013. All rights reserved

This function de-registers controller drivers from the ISP1763A hardware abstraction
layer.

void isp1763_unregister_driver(struct isp1763_driver *drv)

Parameters:

drv: Pointer to the driver registration data structure.

Return value: None.

This function registers an Interrupt Service Routine (ISR) to the interrupt line. The
interrupt line is specified in device data structure elements.

int isp1763_request_irq(void (*handler)(struct isp1763_dev *, void

*),struct isp1763_dev *dev, void *isr_data)

Parameters:

handler: This function is called whenever the hardware abstraction layer
receives an interrupt on the device interrupt line. Input parameters to this
function are the ISP1763A device data structure (dev) and the controller driver
ISR data (isr_data).

dev: Pointer to the ISP1763A device data structure (struct isp1763_dev).

isr_data: Pointer to the controller data identifier. This is an input parameter
when the ISR is called.

Return :

0: ISR registration is successful.

: ISR registration has failed.

This function frees the ISR from the interrupt line of the device.

void isp1763_free_irq(struct isp1763_dev *dev, void *isr_data)

Parameters:

dev: Pointer to the ISP1763A device data structure (struct isp1763_dev).

isr_data: Pointer to the controller data (identifier).

Return value: None.

This function reads the 32-bit ISP1763A register.

ISP1763A Linux software User manual Hardware abstraction

layer

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 13 (35)

© Copyright ST 2010, 2013. All rights reserved

__u32 isp1763_reg_read32(struct isp1763_dev *dev,__u16 reg,__u32

data)

Parameters:

dev: Pointer to the ISP1763A device data structure (struct isp1763_dev).

reg: Register index of the ISP1763A device.

data: Temporary variable in which the data read from the register will be
placed.

Return value:

32-bit register content.

This function writes to the 32-bit ISP1763A register.

void isp1763_reg_write32(struct isp1763_dev *dev,__u16 reg,__u32

data)

Parameters:

dev: Pointer to the ISP1763A device data structure (struct isp1763_dev).

reg: Register index of the ISP1763A device.

data: Data to be written to the ISP1763A.

Return value: None.

This function reads the 16-bit ISP1763A register.

__u16 isp1763_reg_read16(struct isp1763_dev *dev,__u16 reg,__u16

data)

Parameter:

dev: Pointer to the ISP1763A device data structure (struct isp1763_dev).

Return value: 16-bit data content.

This function writes to the 16-bit ISP1763A register.

void isp1763_reg_write16(struct isp1763_dev *dev,__u16 reg,__u16

data)

Parameters:

dev: Pointer to the ISP1763A device data structure (struct isp1763_dev).

reg: Register index of the ISP1763A device.

data: Data to be written to the ISP1763A.

Return value: None.

ISP1763A Linux software User manual Hardware abstraction

layer

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 14 (35)

© Copyright ST 2010, 2013. All rights reserved

This function reads the 8-bit ISP1763A register.

__u8 isp1763_reg_read8(struct isp1763_dev *dev,__u16 reg,__u8

data)

Parameter:

dev: Pointer to the ISP1763A device data structure (struct isp1763_dev).

Return value: 8-bit data content.

This function writes to the 8-bit ISP1763A register.

void isp1763_reg_write8(struct isp1763_dev *dev,__u16 reg,__u8

data)

Parameters:

dev: Pointer to the ISP1763A device data structure (struct isp1763_dev).

reg: Register index of the ISP1763A device.

data: Data to be written to the ISP1763A.

Return value: None.

This function reads from the memory to the ISP1763A.

int isp1763_mem_read(struct isp1763_dev *dev, __u32 start_add,

 __u32 end_add, __u32 * buffer, __u32 length, __u16 dir)

Parameter:

dev: Pointer to the ISP1763A device data structure (struct isp1763_dev) is filled
with the memory descriptor buffer supplied.

start_add: Starting address of the memory

end_add: End address

buffer: Buffer pointer

length: Length

dir: Direction (increment or decrement)

Return value:

Operation successful = TRUE

This function writes to the memory from the ISP1763A.

int isp1763_mem_write(struct isp1763_dev *dev, __u32 start_add,

__u32 end_add, __u32 * buffer, __u32 length, __u16 dir)

ISP1763A Linux software User manual Hardware abstraction

layer

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 15 (35)

© Copyright ST 2010, 2013. All rights reserved

Parameter:

dev: Pointer to the ISP1763A device data structure (struct isp1763_dev) is filled
with the memory descriptor buffer supplied.

start_add: Starting address of the memory

end_add: End address

buffer: Buffer pointer

length: Length

dir: Direction (increment or decrement)

Return value:

0: Data read successfully.

< 0: Failed.

ISP1763A Linux software User manual Host controller

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 16 (35)

© Copyright ST 2010, 2013. All rights reserved

5 Host controller interface

The HCD transfers data to connected USB devices and manages root hub ports.

The transfers from the USB core driver in the form of the USB Request Block (URB) are
scheduled over the USB bus in a round-robin method. The standard Linux ver. 2.6.20
Enhanced Host Controller Interface (EHCI) driver is modified to suit the ISP1763A
architecture.

The main reason to follow the Linux ver. 2.6.20 host controller architecture is to utilize the
horizontal and vertical traversal rules set by the EHCI driver. To transfer data to or from
the EHCI, the hardware schedule list that is traversed by the hardware and scheduled
over the USB bus is used. The ISP1763A, however, uses the software-driven interrupt-
based scheduler that is responsible to schedule PTDs into the ISP1763A hardware and
complete transfers required for the USBD.

Scheduling a transfer over the ISP1763A means scheduling the PTD over the shared
memory of the ISP1763A. Transfer scheduling is done by the software and filled in the
shared memory of the ISP1763A for hardware execution.

The ISP1763A host controller memory is divided into two parts: data payload area and
header area. The data payload contains data to be transferred, and the header contains
the PTD, which dictates how the transfer is to be performed by the hardware.

The ISP1763A host controller traverses the memory in a linear method. A PTD is
dynamically added and removed from the endpoint list by using the Skip bit. Using this bit,
the host controller determines whether to access the respective PTD. The driver uses the
Done bit to check the completion status of the PTD.

PTD structures are translations of Linux ver. 2.6.20 EHCI data structures that are
optimized for the ISP1763A, which is a slave host controller and has no bus master
capability.

PTD data structures are designed to provide maximum flexibility required by USB,
minimize memory traffic, and reduce hardware and software complexity.

The ISP1763A controller executes transactions for devices by using a simple and shared
memory schedule. The schedule consists of data structures organized into three lists:

 ISO: Isochronous transfer schedule list

 INTL: Interrupt transfer list

 ATL: Asynchronous transfer list for control and bulk transfers

The system software maintains two schedules for the host controller: periodic and
asynchronous.

The ISP1763A has a maximum of 16 ISO, 16 INTL, and 16 ATL PTDs. These PTDs are
used as channels to transfer data from the shared memory to the USB bus. These
channels are allocated dynamically to various pipes, which mean PTDs are not fixed to
one pipe. It is allotted to another pipe on completion of all URBs in the current pipe.

ISP1763A Linux software User manual Host controller

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 17 (35)

© Copyright ST 2010, 2013. All rights reserved

Multiple transfers are scheduled to the shared memory for various endpoints by traversing
the next link pointer provided by the endpoint data structure, until it reaches the end of the
endpoint list. There are three endpoint lists: ISO, INTL, and ATL. If the schedule is
enabled, then the host controller executes the ISO schedule, followed by the INTL
schedule, and then the ATL schedule.

These lists are traversed and scheduled by the software, according to the EHCI traversal
rule. The host controller executes the scheduled ISO, INTL, and ATL PTDs.

The completion of a transfer is indicated to the software by the interrupt, which can be
grouped under the various PTDs by using the AND or OR registers that are available for
each schedule type: ISO, INTL, and ATL. These registers are simple logic registers to
decide the group or individual PTDs. When the logical condition of the Done bit is true in
the register, it means that the PTD is completed.

There are four types of interrupts in the ISP1763A: ISO, INTL, ATL, and SOF.

The following sections explain HCD interfaces in detail:

 Module management and controller routines

 Memory management interface

 Root hub and internal hub management

 Data transfer interface

5.1 Module management and controller routines

This function is used to reset the host controller, which contains the following three
operations:

1. Write logic 1 to bit 0 of the SW Reset register (B8h) and wait for it to be self
cleared.

2. Write logic 1 to bit 1 of the SW Reset register (B8h), and wait for it to be self
cleared.

3. Write logic 1 to bit 1 of the USBCMD register (8Ch) and wait for it to be self
cleared.

This function is used to initialize the host controller and set it in operation mode. It is
recommended that you acquire a spin-lock after initialization so that no other function can
preempt the process.

static int pehci_hcd_start(struct usb_hcd *usb_hcd)

Before the controller is set into operational mode, the following three operations are
performed to set the host controller in reset mode and to enable interrupts.

1. Reset the device. pehci_hcd_reset(hcd)

ISP1763A Linux software User manual Host controller

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 18 (35)

© Copyright ST 2010, 2013. All rights reserved

2. Enable the interrupt. pehci_hcd_enable_interrupts(hcd)

3. Initialize map buffers. pehci_hcd_init_map_buffers(hcd)

The HCD sets last PTD bits of all schedule types by writing to
HC_ISO_PTD_LASTPTD_REG (A8h), HC_INT_PTD_LASTPTD_REG (AEh), and
HC_ATL_PTD_LASTPTD_REG (B4h).

/*set last maps, for iso its only 1, else 32 tds bitmap*/

isp1763_reg_write16(pehci_hcd->dev, pehci_hcd-

>regs.atltdlastmap, 0x8000);

isp1763_reg_write16(pehci_hcd->dev, pehci_hcd-

>regs.inttdlastmap, 0x80);

isp1763_reg_write16(pehci_hcd->dev, pehci_hcd-

>regs.isotdlastmap, 0x01);

Initially ISO transfers are not active. The host controller data structure keeps track of the
frame number. Initialize the frame number to –1 and the periodic schedule to 0 to indicate
that ISO transfers are not active.

 /*iso transfers are not active*/

 pehci_hcd->next_uframe = -1;

 pehci_hcd->periodic_sched = 0;

Initialize periodic list base addresses and periodic list heads with the appropriate values,
depending on your program. Set the HCD state in the HCD structure to “running” but do
not process anything yet. Initialize the timer for the root hub polling. Poll until the device is
connected to the internal root hub using the appropriate method, depending on the USB
core and the operating system. Now start enumerating the root hub, which is a hub that is
controlled through register PORTSC1. This register also shows the status of the port.

Complete the host controller start routine by performing the following:

/*set the state of the host to ready */

usb_hcd->state = HC_STATE_RUNNING;

This completes the host controller initialization. The SOF will now be on the internal root
hub port. This allows detection of the port status change with a connection status change
to allow the internal hub to enumerate.

Map buffers are used for transfer management to transfer data between the EHCI TD and
the embedded host controller-specific PTD. To globally manage the transfer, map from
TD to PTD and maintain the status of active channels.

This structure maintains the global position in the ISP1763A buffer.

typedef struct td_ptd_map_buff {

u8 buffer_type; /*Buffertype: BUFF_TYPE_ATL/INTL/ISTL*/

u8 active_ptds; /*number of active td's in the buffer*/

u8 total_ptds; /*num of td's in the buffer (active+removed+skip)*/

u8 max_ptds; /*Maximum number of ptd's(32) this buffer can

withstand*/

u32 active_ptd_bitmap; /* Active PTD's bitmap */

u32 pending_ptd_bitmap; /* skip PTD's bitmap */

ISP1763A Linux software User manual Host controller

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 19 (35)

© Copyright ST 2010, 2013. All rights reserved

td_ptd_map_t map_list[TD_PTD_MAX_BUFF_TDS];/*td_ptd_map list*/

}
U

This structure maintains the individual channel position of the current transfer:

typedef struct td_ptd_map {

u32 state; /* ACTIVE, NEW, TO_BE_REMOVED */

u8 datatoggle; /*preserve the data toggle ATL/ISTL transfers*/

//u16 total_bytes; /*Number of bytes for this PTD &header) */

u32 ptd_bitmap; /*Bitmap of this ptd in HC headers */

u32 ptd_header_addr;/*header address of this td */

u32 ptd_data_addr; /*data addr of this td to write in & read

from*/

/*this is address is actual RAM address not the

CPU address* RAM address = (CPU ADDRESS-0x400) >> 3 * */

u32 ptd_ram_data_addr;

u8 lasttd; /*last td , complete the transfer*/

struct ehci_qh *qh; /* Queue head */

struct ehci_qtd *qtd; /* qtds for this endpoint */

struct ehci_itd *itd; /*itd pointer*/

u32 grouptdmap; /*complete with error, then process*/

/*all the tds in the groupmap*/

} td_ptd_map_t;

These buffers are initialized when the host controller is started.

This routine will start the host controller by setting the RUN/STOP bit in the USBCMD
register to RUN and waiting for the handshake to set this bit, indicating that the host
controller is started. CONFIGFLAG indicates the hardware to set the host controller in
EHCI mode. Bit 0 informs the host controller to set the default port routing to the EHCI
host.

This routine is called when all the ports are set to the suspend state to put the controller
into the suspend state as specified in the parameter.

void pehci_hcd_suspend(struct isp1763_dev *dev)

Parameters:

dev: Pointer to the ISP1763A device structure (struct isp1763_dev).

Return value: void.

This function is called before any device is set into the resume state.

void pehci_hcd_resume(struct isp1763_dev *dev)

ISP1763A Linux software User manual Host controller

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 20 (35)

© Copyright ST 2010, 2013. All rights reserved

Parameters:

dev: Pointer to the ISP1763A device structure (struct isp1763_dev).

Return value: void.

This routine sets the controller into the stop state.

pehci_hcd_stop(struct usb_hcd *usb_hcd)

Parameters:

dev: Pointer to the ISP1763A hcd structure (struct usb_hcd).

Return value: void.

Interrupt handler for interrupts: SOF, ITL, and ATL, and responsible for the corresponding
activities.

irqreturn_t pehci_hcd_irq(struct isp1763_dev *dev, void

*__irq_data, struct pt_regs *regs)

Parameters:

dev: Pointer to the ISP1763A device structure (struct isp1763_dev).

regs: Pointer to the register.

__irq_data -> usb_hcd ->pehci_hcd: Pointer to the ISP1763A host controller
data structure (struct pehci_hcd *hcd).

5.2 Memory management interface

The memory allocation for various sections in the ISP1763A is given in Table 2.

Table 2 Memory allocation for various sections

Memory map CPU address Memory address

ISO 0400h to 05FFh 0000h to 007Fh

INTL 0800h to 09FFh 0080h to 00FFh

ATL 0C00h to 0DFFh 0100h to 017Fh

Payload 1000h to 5FFFh 0180h to 0B7Fh

The ISP1763A has 24 kB of on-chip memory that must be mapped on the CPU address:
4 kB PTD area and 20 kB payload area.

ISP1763A Linux software User manual Host controller

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 21 (35)

© Copyright ST 2010, 2013. All rights reserved

This routine initializes the available memory in various block sizes indicated and
predetermined, and preserves the physical address of the blocks in the memory structure.

static void phci_hcd_mem_alloc(u32 size,struct isp1763_mem_addr

memptr,u32 flag)

Input:

u32 size: Size of the memory required.

struct isp1763_mem_addr *memptr: The structure to be filled.

u32 flag: Used for the dynamic memory allocation.

Return value: void.

This function frees the memory based on allocation.

static void phci_hcd_mem_free(struct isp1763_mem_addr *memptr)

Input:

struct isp1763_mem_addr *memptr: The structure to be freed.

Return value: void.

Using memory banks for the operation, when the HCD is mapping the EHCI TD to the
enhanced PTD, the buffer allocation is based on the length. Once a transfer is completed,
the buffer is used for next transfers.

5.3 Root hub and internal hub management

The ISP1763A host controller of the USB bus is required to implement the root hub. The
operational register space contains port registers that contain the minimum hardware
status and control needed to manage the internal root hub of a port.

The host controller traverses EHCI schedules and encounters activities that result in the
host controller executing USB transactions. These transactions are transmitted through
enabled root ports to attached downstream USB devices.

Port registers provide system software with the control and status information required to
manipulate the port according to Universal Serial Bus Specification Rev. 2.0. The
supported features include device detect, device connect, device disconnect, device
reset, port-power manipulation, and port-power management.

The system software must provide an abstraction to the USB system software stack to
allow root hub ports to be manipulated by the system as if they were ports on an external
hub.

ISP1763A Linux software User manual Host controller

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 22 (35)

© Copyright ST 2010, 2013. All rights reserved

The root hub can be managed as an on-chip hub. This requires pseudo descriptors to be
created and the hub enumerated with the hub driver of the system because usually a hub
is enumerating and powering the ports.

The bus address, hub address, and port number in DW1 must be set to 0 for the high-
speed port. The root port is a high-speed port.

On enumeration of the root hub, the ISP1763A will detect a connection of the internal hub
on port 1, the only internal port. The detection is passed to the hub and the USB core
driver. The hub driver returns the appropriate URB, enumerating the internal hub that has
three ports.

The transfer URB then links the transfer schedules in the periodic and asynchronous
schedules. These schedules are traversed and scheduled by the host controller software.

5.4 Data transfer interface

Called by the submit_urb routine. This is used to submit a USB Request Block (URB) for
a data transfer request across the USB bus.

pehci_hcd_urb_enqueue(struct usb_hcd *usb_hcd,struct

usb_host_endpoint *ep,struct urb *urb,gfp_t mem_flags)

Inputs:

usb_hcd *usb_hcd: HCD structure.

usb_host_endpoint *ep: EP data structure

struct urb *urb: USB request structure.

Return:

: Status of completion.

Used to unlink the URB that was previously queued.

static int pehci_hcd_urb_dequeue(struct usb_hcd *usb_hcd, struct

urb *urb)

Inputs:

usb_hcd *usb_hcd: HCD structure.

struct urb *urb: USB request structure.

Return:

int: Completion status.

ISP1763A Linux software User manual Device controller driver

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 23 (35)

© Copyright ST 2010, 2013. All rights reserved

6 Device controller driver interface

The following section explains in detail the APIs of the Device Controller Driver (DCD).

6.1 Module management interface

This interface is with the operating system. It is called at the time of loading or unloading
of the ISP1763A DCD.

static int __init pdc_module_init(void)

This function registers the PDC driver to the ISP1763A HAL driver, which in turn calls the
probe function when the device is found. The Linux kernel module manager calls this
function.

Parameters:

None

Return value:

0: Successful completion of the mass storage class driver kernel module

< 0: Initialization failed

static void __exit pdc_module_cleanup(void)

This function is used to de-initialize the DCD module. The Linux kernel module manager
calls this function during unloading of this module. It unregisters the DCD from the
ISP1763A HAL layer.

Parameters: None

Return value: None

6.2 Interface between DCD and USB class driver

INT32 (*set_config)(VOID *priv, UCHAR ubConfig)

Parameters:

priv: Placeholder

ubConfig: Current configuration

ISP1763A Linux software User manual Device controller driver

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 24 (35)

© Copyright ST 2010, 2013. All rights reserved

Return value:

Negative: Failure

Non-negative: Success

Handles configuration of the mass storage device. It enables or disables endpoints.

INT32 (*class_vendor) (VOID *priv, UCHAR *pubSetup, UCHAR

**pubData, UINT16 *pusLength)

This is a call back function to the class driver’s class-specific request handler.

Parameters:

priv: Placeholder

pubSetup: USB control request

pubData: Request buffer

pusLength: Length of the data buffer

Return value:

Negative: Failure

Non-negative: Success

Handles class requests for respective class devices.

INT32 (*set_intf) (VOID *priv, UCHAR ubIntf, UCHAR ubAltSet)

This is a callback handler for the set interface request.

Parameters:

priv: Placeholder

ubIntf: Interface Index

ubAltSet: Interface value

Return value:

0 on success else failure

It enables the interface of the class device.

int pdc_register_class_drv(struct pdc_class_drv *drv)

Parameters:

drv: Clients interface data structure

ISP1763A Linux software User manual Device controller driver

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 25 (35)

© Copyright ST 2010, 2013. All rights reserved

Returns value:

Zero for success.

Non-zero for failure.

Registers client drivers to DCD.

void pdc_deregister_class_drv(struct pdc_class_drv *drv)

Parameters:

drv: Clients interface data structure

Returns value: Nothing

De-registers client drivers from DCD.

Int pdc_submit_urb(struct pdc_urb *urb_req)

Parameters:

urb_req: URB request data structure

Return value:

0 on success else failure

This function handles the submission of transfer URBs to endpoint buffers.

Int pdc_cancel_urb(struct pdc_urb *urb_req)

Parameters:

urb_req: URB request data structure

Return value:

0 on success else failure

This function cancels all the pending URBs if any.

pdc_pipe_handle_t pdc_open_pipe(struct pdc_pipe_desc * pipe_desc)

Parameters:

pipe_desc: Pipe descriptor or endpoint data structure

Return value:

Returns the pipe handle for the specified endpoint.

ISP1763A Linux software User manual Device controller driver

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 26 (35)

© Copyright ST 2010, 2013. All rights reserved

This function enables the endpoint and returns the pipe handle.

Void pdc_close_pipe(pdc_pipe_handle_t pipe_handle)

Parameters:

pipe_handle: Pipe descriptor or endpoint data structure

Return value: Nothing

This function disables the endpoint and invalidates the pipe handle.

int pdc_pipe_operation(struct pdc_pipe_opr *pipe_opr)

Parameters:

pipe_opr: Pipe operation data structure

Return value:

Returns 0 on success else failure.

This function is used to stall and un-stall endpoints. It is also used to get the current
endpoint pipe status.

6.3 Interface between DCD and hardware abstraction

layer

Following are interfaces that interact with the hardware access layer. You may be
required to customize interfaces to interact with your platforms.

__u8 pdc_read8(__u16 reg)

Parameters:

reg: Register address

Return value: Returns 8-bit value on success

This function reads the specified register and returns 8 bit value.

void pdc_write8(__u16 reg, __u8 data)

Parameters:

reg: Register address

data: 18-bit data to be written into the specified register

ISP1763A Linux software User manual Device controller driver

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 27 (35)

© Copyright ST 2010, 2013. All rights reserved

Return value: Nothing

This function writes specified 8-bit value into the specified register.

__u16 pdc_read16(__u16 reg)

Parameters:

reg: Register address

Return value: Returns 16-bit value on success

This function reads the specified register and returns 16-bit value.

void pdc_write16(__u16 reg, __u16 data)

Parameters:

reg: Register address

data: 16-bit data to be written into the specified register

Return value: Nothing

This function writes specified 16-bit value into the specified register.

static __inline__ __u32 pdc_read32(__u16 reg)

Parameters:

reg: Register address

Return value: Returns 32-bit value on success.

This function reads the specified register and returns 32-bit value.

static __inline__ void pdc_write32(__u16 reg, __u32 data)

Parameters:

reg: Register address

data: 32-bit data to be written into the specified register

Return value: Nothing

This function writes specified 32-bit value into the specified register.

ISP1763A Linux software User manual Device controller driver

interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 28 (35)

© Copyright ST 2010, 2013. All rights reserved

static int readendpoint(int endpoint, u8 * buffer, int length)

Parameters:

endpoint: Endpoint number

buffer: Buffer in which the endpoint data is to be read

length: Length of the data to read

Return: Returns the buffer length on success

This function reads the endpoint data from endpoint buffers.

static void writeendpoint(int endpoint, u8 * buffer, int length)

Parameters:

endpoint: Endpoint number

buffer: Endpoint data buffer to be written

length: Length of the data to write

Return: Nothing

This function writes the endpoint data into endpoint buffers.

ISP1763A Linux software User manual OTG controller interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 29 (35)

© Copyright ST 2010, 2013. All rights reserved

7 OTG controller interface

OTG is a supplement to Universal Serial Bus Specification Rev. 2.0 that augments
existing USB peripherals by adding to these peripherals limited host capability to support
other targeted USB peripherals. It is primarily targeted at portable devices because it
addresses concerns related to such devices, such as small connector and low power.
Non-portable devices, even standard hosts, can also benefit from OTG features.

The ISP1763A OTG controller is designed to perform all tasks specified in the OTG
supplement. It supports Host Negotiation Protocol (HNP) and Session Request Protocol
(SRP) for dual-role devices. The ISP1763A uses software implementation of HNP and
SRP for maximum flexibility. A set of OTG registers provides control and status
monitoring capabilities to support software HNP and SRP.

The OTG driver controls the activities on the OTG port by using the HCD port control
interface.

7.1 Module management

This interfaces to the OS and is called at the time of loading and unloading the ISP1763A
OTG controller driver to the kernel. The following functional interface is based on the PCI
x86 platform Linux platform, and can be modified, depending on the operating system.

This function initializes the ISP1763A hardware access driver module. The Linux kernel
module manager calls this function.

static int __init usb_otg_module_init (void)

Parameters: None.

Return value:

0: The ISP1763A hardware access driver kernel module is successfully
completed.

< 0: The ISP1763 kernel module initialization has failed.

This function de-initializes the ISP1763A hardware access driver module. The Linux
kernel module manager calls this function during the unloading of this module.

void __exit usb_otg_module_cleanup (void)

Parameters: None.

Return value: None.

ISP1763A Linux software User manual OTG controller interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 30 (35)

© Copyright ST 2010, 2013. All rights reserved

7.2 OTG controller routines

This function processes the notification from the above layer, such as peripheral and hub
driver on behalf of the OTG FSM.

void otgfsm_pdc_notif(void *priv, unsigned long notif, unsigned

long data)

Parameters:

priv: Pointer to the ISP1763A OTG structure.

notif: Integer value indicating device state suspend, reset, or resume.

data: Integer value indicating device HNP enable or support.

Return value: None.

This function is the interrupt handler for OTG interrupts.

void static usb_otg_isr_handler(struct isp1763_dev *dev, void *

isr_data)

Parameters:

dev: Pointer to the ISP1763A device structure.

isr_data: Pointer to the ISR data handler of the driver.

Return value: None.

This function prints the current state and OTG controller register values. The function will
be called by the application through the usb_otgdev_ioctl function.

void otgfsm_current_state(otg_fsm_t * fsm_data)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

Return value: None.

This function de-initializes the OTG FSM state.

void otgfsm_deininit(otg_fsm_t *fsm_data)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

Return value: None.

ISP1763A Linux software User manual OTG controller interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 31 (35)

© Copyright ST 2010, 2013. All rights reserved

This function initializes the FSM. It also sets the state of the OTG based on the ID pin.

void otgfsm_init(otg_fsm_t *fsm_data)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

Return value: None

This function controls the local pull-up.

void otgfsm_dp_pullup(otg_fsm_t *fsm_data,__u8 ctrl_flag)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

ctrl_flag: Integer value indicating control true or false.

Return value: None.

This function controls the local pull-down.

void otgfsm_dp_pulldown(otg_fsm_t *fsm_data,__u8 ctrl_flag)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

ctrl_flag: Integer value indicating control true or false.

Return value: None.

This function controls the local VBUS.

void otgfsm_local_vbus(otg_fsm_t *fsm_data, __u8 ctrl_flag)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

ctrl_flag: Integer value indicating control true or false.

Return value: None.

This function controls the 2 ms SE0 state. It triggers bus reset during the BWAIT_ACON
state.

void otgfsm_otg_se0_en(otg_fsm_t *fsm_data,__u8 ctrl_flag)

ISP1763A Linux software User manual OTG controller interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 32 (35)

© Copyright ST 2010, 2013. All rights reserved

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

ctrl_flag: Integer value indicating control true or false.

Return value: None.

This function runs the OTG FSM. It loops the state machine until the current state and
previous state of OTG are the same.

void otgfsm_run(otg_fsm_t *fsm_data)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

Return value: None.

This function runs the A-device FSM.

static void otgfsm_run_Adevice(otg_fsm_t *fsm_data)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

Return value: None.

This function runs the B-device FSM.

static void otgfsm_run_Bdevice(otg_fsm_t *fsm_data)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

Return value: None.

This function sets the variable of the FSM, based on the input from the application
through usb_otgdev_ioctl. Example, bus request.

void otgfsm_set_state(otg_fsm_t *fsm_data, __u8 cmd)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

cmd: Integer value indicating the state to set the host, suspend, bus drop, idle,
and peripheral.

ISP1763A Linux software User manual OTG controller interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 33 (35)

© Copyright ST 2010, 2013. All rights reserved

Return value: None

This function reads and updates OTG FSM variables from the OTG interrupt source
register.

void otgfsm_status_probe(otg_fsm_t *fsm_data)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

Return value: None.

This function selects which ATX is connected to the OTG port: host controller or
peripheral controller. By default, the peripheral controller is selected.

void otgfsm_sw_sel_hc_dc(otg_fsm_t *fsm_data,__u8 ctrl_flag)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

ctrl_flag: Integer value indicating control true or false.

Return value: None.

This function charges VBUS. Used to send VBUS pulsing in session request protocol.

void otgfsm_vbus_chrg(otg_fsm_t *fsm_data,__u8 ctrl_flag)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

ctrl_flag: Integer value indicating control true or false.

Return value: None

This function is to drive VBUS.

void otgfsm_vbus_drv(otg_fsm_t *fsm_data,__u8 ctrl_flag)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

ctrl_flag: Integer value indicating control true or false.

Return value: None.

ISP1763A Linux software User manual OTG controller interface

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 34 (35)

© Copyright ST 2010, 2013. All rights reserved

This function is used to set and clear bits in the OTG Control register.

unsigned short OtgHal_AccessCtrlReg(otg_fsm_t *fsm_data,unsigned

char

ubAccessType,u32 ulAccessFields)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

ubAccessType: Char type value indicating access type read, set, and clear
register.

ulAccessFields: Integer value indicating the value to be set in the register.

Return value:

1: Success.

0: Failure.

This function configures the hardware when the OTG state machine exits the current state
and enters the new state.

static void phOtgHal_ConfigHwForFsmState(otg_fsm_t *fsm_data,

UCHAR

ubFsmState,UCHAR ubConfigCode)

Parameters:

fsm_data: Pointer to the OTG FSM state machine.

ubFsmState: Char type value indicating the FSM state.

ubConfigCode: Char type value indicating configuration code init or exit.

Return value: None.

ISP1763A Linux software User manual Glossary

UM0907

CD00264695 Rev 3 2013-10-02 ISP1763A 35 (35)

© Copyright ST 2010, 2013. All rights reserved

Glossary

API Application Programming
Interface

ATL Asynchronous Transfer List

ATX Analog USB Transceiver

DCD Device Controller Driver

EHCI Enhanced Host Controller
Interface

EP Endpoint

FSM Finite State Machine

HAL Hardware Abstraction
Layer

HCD Host Controller Driver

HNP Host Negotiation Protocol

H/W Hardware

INTL Interrupt

ISO Isochronous

ISR Interrupt Service Routine

MSCD Mass Storage Controller
Driver

OS Operating System

OTG On-The-Go

PTD Proprietary Transfer
Descriptor

SOF Start-Of-Frame

SRP Session Request Protocol

TD Transfer Descriptor

URB USB Request Block

USB Universal Serial Bus

	1 About this document
	1.1 Purpose
	1.2 Revision information
	1.3 Reference list

	2 Introduction
	3 Overview
	3.1 ISP1763A hardware access layer
	3.2 ISP1763A host controller driver
	3.3 ISP1763A device controller driver
	3.4 ISP1763A OTG controller driver

	4 Hardware abstraction layer
	4.1 Module management interface
	4.1.1 isp1763_pci_module_init
	4.1.2 isp1763_pci_module_cleanup

	4.2 Controller driver interface
	4.2.1 Driver registration interface
	4.2.1.1 isp1763_register_driver
	4.2.1.2 isp1763_unregister_driver

	4.2.2 Resource management interface
	4.2.2.1 isp1763_request_irq
	4.2.2.2 isp1763_free_irq

	4.2.3 I/O access interface
	4.2.3.1 isp1763_reg_read32
	4.2.3.2 isp1763_reg_write32
	4.2.3.3 isp1763_reg_read16
	4.2.3.4 isp1763_reg_write16
	4.2.3.5 isp1763_reg_read8
	4.2.3.6 isp1763_reg_write8
	4.2.3.7 isp1763_mem_read
	4.2.3.8 isp1763_mem_write

	5 Host controller interface
	5.1 Module management and controller routines
	5.1.1 pehci_hcd_reset
	5.1.2 pehci_hcd_start
	5.1.3 pehci_hcd_init_map_buffers
	5.1.4 pehci_hcd_start_controller
	5.1.5 pehci_hcd_suspend
	5.1.6 pehci_hcd_resume
	5.1.7 pehci_hcd_stop
	5.1.8 pehci_hcd_irq

	5.2 Memory management interface
	5.2.1 phci_hcd_mem_init
	5.2.2 phci_hcd_mem_alloc
	5.2.3 phci_hcd_mem_free

	5.3 Root hub and internal hub management
	5.4 Data transfer interface
	5.4.1 pehci_hcd_urb_enqueue
	5.4.2 pehci_hcd_urb_dequeue

	6 Device controller driver interface
	6.1 Module management interface
	6.1.1 pdc_module_init
	6.1.2 pdc_module_cleanup

	6.2 Interface between DCD and USB class driver
	6.2.1 set_config
	6.2.2 class_vendor
	6.2.3 set_intf
	6.2.4 pdc_register_class_drv
	6.2.5 pdc_deregister_class_drv
	6.2.6 pdc_submit_urb
	6.2.7 pdc_cancel_urb
	6.2.8 pdc_open_pipe
	6.2.9 pdc_close_pipe
	6.2.10 pdc_pipe_operation

	6.3 Interface between DCD and hardware abstraction layer
	6.3.1 pdc_read8
	6.3.2 pdc_write8
	6.3.3 pdc_read16
	6.3.4 pdc_write16
	6.3.5 pdc_read32
	6.3.6 pdc_write32
	6.3.7 readendpoint
	6.3.8 writeendpoint

	7 OTG controller interface
	7.1 Module management
	7.1.1 usb_otg_module_init
	7.1.2 usb_otg_module_cleanup

	7.2 OTG controller routines
	7.2.1 otgfsm_pdc_notif
	7.2.2 usb_otg_isr_handler
	7.2.3 otgfsm_current_state
	7.2.4 otgfsm_deininit
	7.2.5 otgfsm_init
	7.2.6 otgfsm_dp_pullup
	7.2.7 otgfsm_dp_pulldown
	7.2.8 otgfsm_local_vbus
	7.2.9 otgfsm_otg_se0_en
	7.2.10 otgfsm_run
	7.2.11 otgfsm_run_Adevice
	7.2.12 otgfsm_run_Bdevice
	7.2.13 otgfsm_set_state
	7.2.14 otgfsm_status_probe
	7.2.15 otgfsm_sw_sel_hc_dc
	7.2.16 otgfsm_vbus_chrg
	7.2.17 otgfsm_vbus_drv
	7.2.18 OtgHal_AccessCtrlReg
	7.2.19 phOtgHal_ConfigHwForFsmState

	Glossary

